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Abstract

An important and elusive characteristic of the COVID-19 pandemic is
the fatality rate which allows us to understand the severity of this disease,
health care needs, and the impact on large populations. To address this and
other questions we present a probabilistic model to study the evolution of
the COVID-19 pandemic and to correct the case fatality rates. Our model
employs probabilities to estimate the time evolution of infections, recover-
ies, and deaths. This model discriminates asymptomatic, mild/moderate,
and severe cases and allows for the estimation of undiagnosed individuals.
Furthermore, we compare the model curves to official data for medium-sized
cities, world metropolises, and medium-sized countries, spanning a range of
populations from a few million to several million individuals. Using the un-
diagnosed estimates we correct the case fatality rates and find that it ranges
from 0.33%± 0.02% to 1.14%± 0.07%. Since we applied the method to
cities and countries with different characteristics, the corrected case fatality
rates indicate a universality that is independent of location and other so-
cial/demographic conditions. Our results agree with sample tests and sero-
prevalence studies, considerably changing our understanding of the COVID-
19 fatality rates. Other applications include the estimate for severe cases,
ICU needs, and undiagnosed cases.
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1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS COV 2) is
the virus causing the Corona Virus Disease (COVID-19) [1]. Sources sug-
gest the virus crossed from their animal hosts to humans through an yet
unknown mechanism [2, 3, 4]. It started infecting humans in late 2019 in
Wuhan, China and by March 2020 the disease was spreading fast in several
countries around the globe and was declared a global pandemic by the World
Health Organization (WHO) [5, 6, 7]. The SARS-COV-2 virus is known to
cause a wide variety of symptoms, most notably in the respiratory system
[8, 9] and it spreads through human contact, contaminated surfaces, and
through the air, [10]. This latter mechanism is particularly important if peo-
ple are in confined air-tight spaces such as airplanes, restaurants, and similar
environments. As in other pandemic episodes, isolation plays a major role in
containing the virus [11, 12]. Very early in the pandemic, the governments
imposed social isolation, confinement, and even complete lock downs lasting
several weeks in an effort to stop the virus dissemination. This generated
immense political, social, and economic burdens with consequences virtually
impossible to measure at the present time [13, 14, 15]. Health professionals
and governments worldwide are making huge efforts to understand the virus,
treat the patients and at the same time keep track of infected individuals
[16].

One of the fronts in the battle to understand epidemics and to plan effec-
tive control strategies is guarded by mathematical models [17, 18, 19, 20, 21,
22]. These so-called dynamic or epidemiological models try to answer some
general questions: What is the duration of the epidemic?; How many people
will get infected and die?; Are isolation and social distancing determinants to
the course of the pandemic? The answers to these questions might help gov-
ernments and health care officials to properly react. A widely used approach
to model this problem is the Susceptible-Infectious-Recovered (SIR) model,
first introduced in 1927 [23]. Other efforts use variations/generalizations of
this approach to find exact and more general solutions [24, 25, 26]. Despite
being limited and overly deterministic, SIR-like models continue to be useful
and widely used to study pandemics and outbreaks [27].

In this work, we introduce a probabilistic model to study the COVID-
19 pandemic. In particular, we assign relative probabilities and use random
numbers to weight the occurrence of infections, deaths, and recoveries accord-
ing to the assigned probabilities. This approach uses a straightforward and

2



non-deterministic way to compute the time evolution of the disease and was
specifically designed to model the characteristics of the COVID-19 pandemic.
This model is especially useful to calculate the number of infected individu-
als, deaths, ICU needs, and especially the so-called asymptomatic cases that
often go undiagnosed. One of the most important and elusive features of the
COVID-19 pandemic is the case fatality rate (CFR) [28, 29]. Since asymp-
tomatic cases are difficult to detect and might come in huge numbers, we
anticipate that the number of cases is much larger than officially reported
[30, 31, 32]. This implies that the case fatality rates need to be corrected for
a proper estimation of the real fatality rate. Our model addresses this prob-
lem by dividing those infected into different levels of severity and specifically
estimating asymptomatic cases that often go unreported.

This paper is organized as follows. In section 2 we fully describe our
probabilistic model. Section 3 is devoted to discussing the parameter space
of the model and fitting the model to real curves for selected cities and
countries around the world. We also calculate the case fatality rates of the
COVID-19 infection and correct them using the model results. Section 4 is
dedicated to a thorough discussion of our results and an evaluation of the
impact and reach of our probabilistic approach to modeling this problem.
We also point out and discuss the limitations of the model. In section 5 we
draw our conclusions, especially those regarding the corrections to the case
fatality rates.

2. The Probabilistic Model

We developed a probabilistic code to model and interpret the time evolu-
tion of the COVID-19 pandemic. The model assumes that individuals may
occupy different compartments according to their condition or stage of the
disease: free, asymptomatic, mild/moderate, severe, recovered or deceased
(Fig.1). The model works by assigning probabilities to these compartments
and also to the related events (infections, recoveries, deaths). To weight these
probabilities we use a very well-known and documented random number gen-
erating function [33]. For each day (step or iteration) the code evaluates if
new infections, recoveries, or deaths occur in a completely random, non-
deterministic fashion.

We aim to model a population of N individuals with a fraction I being
isolated. First, we set the infection probability of free individuals (PI) and
assume that the probability of new infections varies according to the number
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of infected individuals (NI) [34]. Since NI varies with time it impĺies that
PI is also a function of time (PI(t)). This happens because as the outbreak
progresses more individuals became infected and the rate of new infections
increases. This cannot go on indefinitely since both the total population N
and the total number of exposed individuals (1− I)×N are finite. It implies
that as more individuals get infected, new infections are less likely, assuming
re-infections do not occur. We thus define PI(t) as given by equation 1 thus
allowing for a realistic modeling of the official cases:

PI(t+ 1) =


PI(t) + S if NI(t) ≤ CF ×N

PI(t) if CF ×N < NI(t) ≤ (CF + δ)×N

PI(t)− S if NI(t) > (CF + δ)×N

(1)

This function is updated at each iteration t (days) and increases by a
constant value S (increase/decrease step). A critical fraction CF of the total
population (CF × N) is considered as a point of interest above which the
function stops growing, in accordance with the idea of herd immunity since
more recovered/immunized individuals decrease the rate of new infections.
Thus the infection probability remains constant during a critical interval
ranging from CF × N < NI(t) ≤ (CF + δ) × N , where δ represents a small
variation of the critical fraction CF . In our simulations, we use CF = 0.40 and
δ = 0.10, although these values can be reset by the user. When the critical
interval is exceeded (NI(t) > (CF + δ) × N) the model assumes that new
infections are rarer and thus the probability of infection starts to decrease
with a negative S at each iteration. Eventually PI(t) is so low that the rate
of new infections dims and the outbreak dies out.

Next we assign relative probabilities for each compartment in fig. 1.
Free individuals, once infected, have a probability of assuming one of the
infected compartments: asymptomatic (PA), mild/moderate (PM), or se-
vere (PS). In this model, only severe cases might evolve to death and we
assign a probability PD for this occurrence. Hence, the recovery probabil-
ity of severe cases is PR = 1 − PD. The model has three levels of ran-
domness and at each iteration, all individuals are checked. If an individ-
ual is free then the first aleatory number is drawn and compared against
PI(t). If the individual becomes infected then a second aleatory number
is drawn and compared to PA, PM , and PS to check the severity of the
case. Also at each iteration the model calculates/updates the number of
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asymptomatic (A(t)), mild/moderate M(t), severe cases (S(t)), recoveries
and deaths (D(t)). Asymptomatic and mild/moderate individuals always re-
cover in tA and tM days after infection. Severe cases either recover or evolve
to death in tS days after infection when a third and final aleatory number is
drawn and compared to PD to decide if a death or a recovery will occur. It
is very important to set these different recovery times to realistically model
the official deaths and case curves. In our simulations we used fixed me-
dian recovery times (days) for the asymptomatic (tA = 10), mild/moderate
(tM = 15) and severe cases (tS = 20), according to [35, 36]. However, these
values can be adjusted by the user if needed. As mentioned, a fraction I of
the total population N is isolated/quarantined and the model will thus run
on (1 − I) × N individuals. In summary, all the probabilities (PA, PM , PS,
PD) and parameters (I, S, CF , δ) are set by the user and reasonable values
will be discussed in section 3.

It is known that the official number of total cases is often underesti-
mated by a myriad of factors. Up to 75% of cases are asymptomatic [37, 38],
meaning that these cases will rarely enter the official records. To properly
model this feature we need to estimate a range for the number of cases to
account for those that are not detected. Our model thus calculates both
an upper limit (Nupp

I (t) = A(t) +M(t) + S(t) + R(t) + D(t)) and a lower
limit (N low

I (t) = Nupp
I (t) − A(t)) for the total number of cases, allowing for

a flexible range for the total number of infections. Note that the cumulative
number of cases (NI(t)) is different from the total number of active cases
(NA(t)), representing those currently infected: Nupp

A (t) = A(t)+M(t)+S(t)
and N low

A (t) = Nupp
A (t)− A(t). Cumulative cases grow as a function of time

and eventually reach a plateau. In contrast, active cases increase as a func-
tion of time reaches a maximum and then starts to fall, eventually reaching
zero as A(t), M(t), and S(t) either recover or die. Both cumulative and ac-
tive cases are given by the model and the user may choose which one to use
depending on the data format available for the official cases. In this work,
we chose to model our data using the cumulative cases model curves.

To fit the models to the official data we allow the probabilities for asymp-
tomatic and mild/moderate cases to vary in the range PA = 0.67− 0.70 and
PM = 0.28− 0.31 respectively, while fixing PS = 0.02, according to the med-
ical literature [37, 39, 40]. In practice we let the official curves for cases and
deaths tell us exactly which values to use. With recovery times and proba-
bilities for each case severity fixed, we are left with PD and S to be adjusted.
We follow the available information in the literature but ultimately let the
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models adjust according to the data. We adjust the model parameters and
probabilities to get a good fit on the overall shape of the curve (setting S is
critical) and determine the best fit by minimizing the χ2 to obtain a good fit
by comparing D(t) to the official deaths (DO) and verifying which isolation
model corresponds to the official data. We then use the same isolation to
adjust both Nupp

I (t) and N low
I (t) to the official data. Since both cumulative

models are well above the official cases we multiply the official case curves by
an underestimation correction, meaning that many cases are ’missing’ in the
official data. We end up with two underestimation factors (U low

C and Uupp
C )

that give us a range for the number of real cases. After both curves are ad-
justed according to D(t), we have two equations relating the models (NI(t))
and the official cases (CO): Nupp

I (t) = CO × Uupp
C and N low

I (t) = CO × U low
C .

To calculate the case fatality rate (CFR) we simply divide official deaths
(DO) by the total number of official cases (CO), according to equation 2(a).
However the model offers a way to correct the denominator of this equation
and we use both U low

C and Uupp
C to obtain the corrected case fatality rates,

according to equations 2(b),(c). These equations properly correct the case
fatality rates by taking into account the adjusted number of cases. Note
that using U low

C as a correction produces an upper limit for the case fatality
rate (CCRF upp) and using Uupp

C produces a lower limit (CCFRlow), because
U low
C < Uupp

C .

CFR = DO/CO, (a)

CCFRlow = DO/N
upp
I (t) = DO/(CO × Uupp

C ) = CFR/Uupp
C , (b) (2)

CCFRupp = DO/N
low
I (t) = DO/(CO × U low

C ) = CFR/U low
C , (c)

As shown in the next section these corrections dramatically change the
case fatality rates for the COVID-19 pandemic.

3. Results

In this section we show: i) The parameter space of the model; ii) The
fits of official data for selected cities and countries around the globe; iii) The
case fatality rates and their corrections using the model results.

3.1. Exploring the Model Parameter Space
To test the model parameter space we simulated a fictitious city with

1,000,000 individuals using as input (figure 2): CF = 0.40; δ = 0.10; PA =
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0.70; PM = 0.29; PS = 0.01; PD = 0.4; tA = 10; tM = 15; tS = 20. On the
left side we fix I = 0% and sweep several values of the infection probability
parameter from S = 10−2 to S = 10−7. If S ≥ 10−4 we have shorter out-
breaks with death curves stabilizing in ∼ 200 days (in this particular case)
with very high Nupp

I , N low
I and severe cases in a very short period of time.

Instead, if S ≤ 10−5 we have longer outbreaks with death curves stabiliz-
ing after ∼ 600 days. In these cases, Nupp

I and N low
I , and severe cases are

more spread out in time. On the right side of this figure, we fix S = 10−5

and sweep several values of the isolation parameter ranging from I = 0 to
I = 0.90. The most ubiquitous features when I varies are: (i) I changes
the height of the plateau reached in each case; ii) different values of I do
not impact the duration of the outbreak; iii) The number of cumulative and
severe cases change drastically from I = 0 to I = 0.90 since the numbers of
exposed individuals change with I. The number of deaths also varies from
150 (I = 0.90) to 2800 (I = 0). Model results for the severe cases for different
values of S and I have a peak and eventually vanish as more people either
die (with probability PD) or recover (with probability 1− PD). This exper-
iment clearly demonstrates the model’s ability to cover different scenarios,
ranging from short-lived outbreaks to long-term infections. Both parameters
S and I are able to account for changes in the steepness, plateau, duration
of outbreaks, and most importantly how rapidly the disease is spread among
the population.

3.2. Fitting the probabilistic model to official COVID-19 cases
We present the applicability of the model to different population sizes

ranging from cities with ∼ 1 million people to larger cities and countries with
several million individuals. In every figure of this section we use CF = 0.40,
δ = 0.10, tA = 10, tM = 15 and tS = 20 to generate models from I = 0.30 to
I = 0.90. Other parameters and probabilities are adjusted according to each
case and are shown in the figures.

Figure 3, left side, displays the models for the city of São Paulo, Brazil
(pop. 12,252,000) which accumulated 247,730 official cases and 11,030 deaths
in the first 181 days after the first officially reported case on February 26th,
2020. On the right side, we show the results for New York City, USA (pop.
8,336,817) which reached 247,613 cases and 19,196 deaths 228 days after the
first reported case on February 29th, 2020. The official data for cases and
deaths (red continuous curves) for both cities are from official government
sources [41, 42]. Figures 3(a),(b),(c),(d) show the fits for the upper and
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lower limit models to the official cases for each city. All fits were adjusted
multiplying the official data (CO) by underestimation factors Uupp

C and U low
C

(indicated in the plots) thus correcting for the missing/undiagnosed cases, as
discussed in section 2. The main result is that São Paulo has its official cases
underestimated by factors ranging from U low

C = 4.39 (lower limit) to Uupp
C =

15.69 (upper limit). In other words, São Paulo had, according to the model,
at least 4.39 times more cases than officially reported. For New York we find
underestimation factors ranging from U low

C = 6.12 to Uupp
C = 21.87, meaning

that New York had at least 6.12 times more cases than officially reported.
Figures 3(e),(f) show the evolution of severe cases for both cities. We find
that for São Paulo the severe cases reach a maximum of 8,291 individuals
106 days after the first reported case (I = 0.70 model curve). For New York,
we find that severe cases reach a maximum of 41,291 such cases 32 days after
the first reported case (I = 0.50 model curve). The official data for severe
cases was not available and is thus not shown. The time evolution of deaths
is shown in figures 3(g),(h). We use the official deaths fit corresponding to
I = 0.70 (São Paulo) and I = 0.50 (New York) to adjust both the upper and
lower limit models to the official cases.

Another example is shown in figure 4 for Italy (pop. 60,360,000) and
Spain (pop. 47,431,256). The official data for these countries were obtained
from official government sources [43, 44]. Italy reached 298,200 cases and
35,710 deaths 219 days after the first reported case on February 15th, 2020.
The time evolution for the upper and lower limit cases for Italy is shown
in figures 4(a),(c). We find U low

C = 10.13 and Uupp
C = 33.79, meaning that

Italy had at least 10.13 times more cases than officially reported. Figure 4(e)
shows that severe cases in Italy reached a maximum of 129,481 individuals
41 days after the first reported case (I = 0.70 curve). The time evolution of
deaths in Italy is shown in figure 4(g). Note that we use the official deaths
best fit corresponding to a line above the I = 0.90 model curve to adjust
both the upper and lower limit models shown in figures 4(a),(b). We further
assume that this line also fits the severe cases in figure 4(e). According to
official data [44], Spain reached 543,400 cases and 29,630 deaths 208 days
after the first reported case on February 15th, 2020. The time evolution for
both upper and lower limit cases are shown in figures 4(b),(d) and we find
U low
C = 9.22 and Uupp

C = 29.77, meaning that Spain had at least 9.22 times
more cases than officially reported. Figure 4(f) shows that severe cases in
Spain reached a maximum of 50,760 such cases 40 days after the first reported
case (I = 0.70 curve). The time evolution of deaths is shown in figure 4(h)
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and a model curve between I = 0.70 and I = 0.90 is the best fit, which was
also used to adjust both upper and lower limit models in figures 4(b),(d).
The same approach described above was applied to other cities and countries
and the results are summarized in table 1.

3.3. Correcting the Case Fatality Rates (CCFR)
One of the most important and elusive features of the COVID-19 pan-

demic is the fatality rate since the official cases are highly underestimated
[45, 46]. Thus calculating the case fatality rates according to equation 2(a)
necessarily produces highly overestimated values (see table 1, CFR(%) col-
umn). As described in section 2 the corrected fatality rates are obtained
using equations 2(b),(c) and the lower and upper values of UC obtained from
the fits. We calculated the CFR’s and their corrections for several countries
and cities as shown in table 1. We find mean corrected case fatality rates and
standard deviations of CCFRlow = 0.33± 0.02 and CCFRupp = 1.14± 0.07.

4. Discussion

The Parameter Space. We tested the model’s ability to properly cover
its parameter space and to account for different scenarios, ranging from short-
lived outbreaks to long-duration infections. We did this by varying parame-
ters S and I. The parameter S is able to describe several outbreak scenarios
as shown in figure 2 (left side) where we fix the value of I to 0 and run
simulations for different values of S in the range 1.0× 10−7 − 1.0× 10−2. In
practice the value of S governs the length of the outbreak. The parameter
I measures how the fraction of isolated individuals affects the evolution of
the pandemic episode. This is investigated in figure 2 (right side) where we
plot the time evolution of Nupp

I , N low
I , severe cases, and deaths for several

values of I (S = 10−5). Although the model is able to account for different
scenarios, we point that the infection probability curve may not be a bonafide
representation of reality. Nevertheless, it is a hypothesis that according to
our tests correctly describes the time evolution of cases. We also point out
that the isolation factor should not be literally interpreted since the fraction
of isolated individuals in a given population varies every day. Also, a city’s
population is not constant and there is a fair amount of people that move
in and out of big urban centers on a daily basis. In other words, there is a
social dynamic that is important but is not taken into account in our model.
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All these factors compete for an oscillating isolation factor and thus limit its
meaning and reach.

Fitting real cases. In figures 3 and 4 we show the fits to real data for
two world metropolises with a few million inhabitants and two medium-sized
countries with several million individuals. In these figures and for the other
cities and countries considered we used a range of values for the S parameter
ranging from 9× 10−5 to 1× 10−2. The death probabilities ranged from 14%
to 22%. We clearly note that good fits were found regardless of the size of the
population, with changes in the parameter S and relatively small variations
in the probabilities. However, the parameter S is not an assumption. Instead,
the shape of official deaths and case curves tell us which value of S better
describes the data. We clearly see that the overall shape of the curves and the
time to reach a plateau were properly recovered by the fits, suggesting similar
and universal characteristics of the disease in different locations around the
globe and for different population sizes, despite the complex social dynamics
and limitations described above.

The immediate gain from each fit is the Uupp
C and U low

C values. These
numbers are very different for each one of the places considered and are
summarized in table 1. For New York, official data indicates 247,730 cases
(after 228 days), but we find Uupp

C = 21.87 and U low
C = 6.12, meaning that the

real number of cases could be at least 6.12 times higher or even 21.87 times
higher. If we consider the lower limit as true, for instance, we find that official
cases are roughly 16% of the real cases, i.e., 84% of the cases went unnoticed.
Italy had 298,200 official cases (after 219 days) and we find Uupp

C = 33.79
and U low

C = 10.13. Again, using the lower limit result, we find that Italy had
at least 10.13 times more cases than officially reported, meaning that official
cases represent roughly 10% of the real cases. Similar conclusions might be
drawn for the other places considered and this discrepancy in official and real
cases could be due to limited or no access to medical facilities, poor testing
or a myriad of other factors [47, 48].

Severe Cases and ICU needs. Our model estimates the number of
severe cases, those that will most likely visit the hospital in need of medical
care. Some of these cases might require long-term medical attention and a
fraction of those will need intensive care units (ICU) and respirators. The
curves corresponding to severe cases show that they go up, reach a peak, and
start to decrease as the outbreak progresses. For Spain (see Fig.4), consid-
ering the I = 0.70 model curve, we see that severe cases peaked roughly at
50,000 individuals. This result alone dramatically explains why the medical
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facilities and hospitals in Spain (and in many other cities and countries) had
exhausted their capacities very early into the outbreak [49, 50, 51, 52]. For
instance, if only 2% of these severe cases require intensive care, we are still
talking about 1000 ICU beds that must be dedicated to COVID-19 patients.
However, as of 2013, Spain had a total of 4700 multi-purpose ICU beds in the
entire country [53]. Another example is New York City which had, according
to official data 17,259 individuals hospitalized 32 days after the first reported
case on February 29th, 2020 [41]. No data was available to show how many
of those hospitalized required respirators/ICU beds. For NYC, the model
predicts a maximum of 41,291 severe cases for the 32nd day after the first re-
ported case. Taking into account that severe cases take ∼ 20 days to recover
(or evolve to death) [36] we should compare the model prediction to day 52
after the first reported case. Comparing the model prediction to the official
data [41] on day 52 we indeed see that NYC had 41,516 hospitalizations.
This demonstrates how precisely the model estimates the number of those in
need of hospitalizations/ICU beds for such a full-blown pandemic episode.
However, we did not explore in depth this particular aspect of the model
since we focused on estimating the corrections to the case fatality rates.

Correcting the Official Case Fatality Rate. We use the U low
C and

Uupp
C values to correct the official case fatality rates (CFR’s) according to

equation 2. These results are in table 1. We notice the values of U low
C

and Uupp
C are very different for each of the locations considered but we find

CCFRupp = 1.14% ± 0.07% and CCFRlow = 0.33% ± 0.02%. These small
standard deviations for the mean CCFR’s contrast to the wildly different
CFR’s for the many locations considered which average 6.75%± 3.11%. Al-
though the corrections applied to the models to fit the many official data
curves were very different, they translate into consistent corrected case fatal-
ity rates (see table 1). In summary, considering the ubiquitous unreported
cases the resulting corrected case fatality rates (CCFR’s) are much lower
than the case fatality rates (CFR’s).

In summary we find the corrected case fatality rates (CCFR’s) ranging
from 0.33% to 1.14%. This is in accordance with completely independent
studies that use sample testing conducted worldwide and especially in hard-
hit countries like Brazil and the USA. In particular, a study compiling data
from several independent seroprevalence studies in 51 different countries finds
case fatality rates varying from 0% to 1.54% with a median of 0.27%. This
study includes both light (e.g. Afghanistan) and hard (e.g. USA) hit areas
around the globe [54]. Another seroprevalence study conducted in Brazil in
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90 cities (comprising 54 million individuals) finds that the official number of
cases is underestimated by a factor of 7. These cities combined had (until May
2020) ∼ 105, 000 official cases and ∼ 8, 000 deaths, suggesting a corrected
case fatality rate of ∼ 1.10% [55, 56]. Finally, another seroprevalence study
conducted in New York City finds a corrected case fatality rate for the first
wave of the COVID-19 pandemic of 0.97% [57]. These studies find corrected
case fatality rates well inside the range indicated by our model. We highlight
that seroprevalence studies are a completely different approach compared to
our mathematical-statistical study.

We mention that calculating the real case fatality rates for the COVID-19
pandemic is a challenge since it is impacted by access to medical facilities,
social constraints, population size and density, the mean age of the impacted
population, and a myriad of other factors. That is why our method tries
to set both an upper and a lower limit for the CCFR’s. We argue that
countries with better infrastructure, medical facilities, and social standards
might experience a lower case fatality rate than countries with less favorable
conditions. Nevertheless, even considering the lower limit of 0.33%± 0.02%
this disease is at least 30 times deadlier than the 2009 Swine Flu pandemic
which had an estimated case fatality rate of 0.01% [58, 59].

5. Conclusions

Our probabilistic method was able to generate model curves and good fits
to the official data for different population sizes, thus demonstrating that the
parameters and probabilities chosen to describe the problem for each case are
correctly describing the time evolution of the COVID-19 pandemic. These
results clearly show how isolation plays an important role in preventing the
spread of this disease. This probabilistic model was designed to estimate the
number of undiagnosed patients using both an upper and a lower limit for
the number of cases, clearly showing that real cases might be several times
larger than official reported cases, independent of population size and other
factors. This clearly demonstrates a universal characteristic for the disease
and especially for the corrected case fatality rates. The model also demon-
strated that we can estimate the time evolution of severe cases and showed
that thousands of patients were in this condition during the most severe days
of the outbreak, in accordance with official data. That was the reason for
so many deaths in the first months after the first reported cases: hospitals
were not prepared for a fast-spreading disease like COVID-19. No country or
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health system can deal with several thousand individuals in need of medical
care at the same time, some of which in dire need of respirators. Our main
result is the use of a range of values for the number of real cases to correct the
official fatality rates. Notwithstanding, the corrections applied for the num-
ber of cases were very different the derived corrected fatality rates are rather
consistent and have small standard deviations which agree with other studies
employing seroprevalence methods. We find that the COVID-19 pandemic
may not be as deadly as initially thought or as indicated by the CFR’s since
the corrected fatality rates range from 0.33%± 0.02% to 1.14%± 0.07%.
This revealed that although the pandemic affected countries and regions in
different ways we were still able to find a universal characteristic for this
pandemic.
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Place (pop. [106]) Cases [103] Deaths [103] U low
C Uupp

C CFR(%) CCFRupp(%) CCFRlow(%)

Natal, Brazil (0.88) 26.89 1.09 3.37 12.00 4.05 1.20 0.34

Curitiba, Brazil (1.93) 40.91 1.42 3.15 10.82 3.47 1.10 0.32

Fortaleza, Brazil (2.64) 49.21 3.87 6.61 23.69 7.86 1.19 0.33

Manaus, Brazil (2.78) 50.02 2.51 4.71 15.68 5.02 1.07 0.32

Rio de Janeiro, Brazil (6.72) 151.89 14.02 7.62 27.23 9.23 1.21 0.34

New York, USA (8.34) 247.61 19.20 6.12 21.87 7.75 1.27 0.35

Mexico City, Mexico (8.92) 107.60 8.85 7.63 27.21 8.22 1.08 0.30

São Paulo, Brazil (12.25) 247.73 11.03 4.39 15.69 4.45 1.01 0.28

Spain* (47.43) 281.00 28.40 9.22 29.77 10.11 1.10 0.34

South Korea* (51.64) 14.63 0.31 1.92 6.88 2.12 1.10 0.31

Italy* (60.36) 298.20 35.71 10.13 33.79 11.98 1.18 0.35

6.75± 3.11 1.14± 0.07 0.33± 0.02

Table 1: Summary of results for several cities and countries (marked with*) with different
populations. We use the number of cases and deaths to calculate the case fatality rates.
The model fits yield U low

C and Uupp
C which are then used to calculate both CCFRupp and

CCFRlow. Note that although CFR’s vary for each location, the averaged CCFRupp and
CCFRlow standard deviations are comparatively smaller.
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Figure 1: The schematic diagram of the probabilistic model of COVID-19 cases.
Each individual might be in one of these compartments: free (A), infected with 3 sub-
classes (B), recovered (C), or dead (D). Once infected, there are three possible conditions
that precede recovery or death: asymptomatic (PA), mild/moderate (PM ) and severe (PS)
[B]. Eventually, Asymptomatic and mild/moderate individuals always recover after times
tA and tM respectively (C). After a time tS , severe cases either recover (C), or die (D),
with the probabilities PR = 1− PD and PD respectively.
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Figure 2: Exploring the model parameter space. This figure shows a variety of
scenarios for the evolution of the COVID-19 disease for different parameters. We simulate
a fictitious city with 1,000,000 inhabitants for a variety of values of the isolation factor
(I) and for several values of the probability curve PI(t) parameter S (equation 1). On
the left hand side panels we show various scenarios referring to the different values of the
parameter S (with a fixed isolation factor I = 0%). Each panel on the left-hand side
shows a different result: The upper limit for the total number of cases (a), the lower limit
for the total number of cases (c), the severe cases (e) and deaths (g). On the right hand
side panels we show several scenarios referring to the different values of I (with fixed S =
10−5). Panels (b), (d), (f) and (h) also show the upper limit for the total number of cases,
the lower limit for the total number of cases, severe cases and deaths, respectively.
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Figure 3: Probabilistic model fitting results to real COVID-19 cases for two
global megalopolis. In this figure we show the models (continuous and dashed black
curves) adjusted for the real data (continuous red curves) for two megalopolis: São Paulo
-SP (left-hand side) and New York - NY (right-hand side). Each model curve corresponds
to a different isolation factor I (green), covering most of the parameter space from I = 30%
to I = 90%. The probabilities PA, PM , PS and PD and the parameters S and UC used to
adjust the models to the data are indicated. We show the upper limit for the total number
of cases (a) and (b); the lower limit for the total number of cases (c) and (d); severe cases
(e) and (f) and deaths cases (g) and (h). Our model estimates the severe cases in each
considered scenario, although we do not have the time evolution of real severe cases for
each of the cities considered.
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Figure 4: Probabilistic model fitting results to real COVID-19 cases for two
European countries In this figure we show the models (continuous and dashed black
curves) adjusted for the real data (continuous red curves) for two European countries:
Italy (left-hand side) and Spain (right-hand side). Each model curve corresponds to a
different isolation factor I (green), covering most of the parameter space from I = 30% to
I = 90%. The probabilities PA, PM , PS and PD and the parameters S and UC used to
adjust the models to the data are indicated. We show the upper limit for the total number
of cases (a) and (b); the lower limit for the total number of cases (c) and (d); severe cases
(e) and (f) and deaths cases (g) and (h). Although we do not have the time evolution of
real severe cases for each of the cities considered, our model estimates the severe cases in
each investigated scenario.
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